Universität des Saarlandes
Fakultät 7 - Physik und Mechatronik

Fachrichtung 7.1 - Theoretische Physik
Prof. Dr. L. Santen
Dr. R. Shaebani (Mail: shaebani@lusi.uni-sb.de)
Dr. C. Chevalier (Mail: carole@lusi.uni-sb.de)
Web: http://santen.physik.uni-saarland.de


Saarbrücken, den 27.10.2023

## Blatt 1 zur Theoretischen Physik IV, WS2023/2024

(Abgabe bis 03.11.2023, 8.30 Uhr)

- Das neue Übungsblatt wird immer in der Freitagsvorlesung veröffentlicht (8.30 Uhr).
- Die Abgabe der Übungsblätter erfolgt am folgenden Freitag zu Beginn der Vorlesung in Papierform oder direkt digital.
- Die Aufgaben sollen in Kleingruppen bearbeitet werden: Es dürfen bis zu drei Namen auf demselben Lösungszettel stehen.
- Für die Zulassung zur Klausur werden $50 \%$ der Punkte aus den Übungsaufgaben benötigt.


## Exercise 1 Conditional probabilities [4 Points]

DNA tests are frequently used in modern criminalistics to solve crimes. A sample from the crime scene is compared with a sample from a suspect. Assume in the following that on average one out of three tested suspects is guilty and one quarter of the tests show a match. In a court case, the prosecutor now argues that the probability of a DNA match for an innocent person is only $15 \%$. The defense attorney points to the likelihood that someone is innocent even though the test is positive. What probability is he citing? Who should the judge believe?

## Exercise 2 Characteristic Function and Moments [15 Points]

Given the following density functions for probability distributions. Show that these are normalized and calculate the characteristic function and the first three moments and cumulants.
a) Uniform distribution: $a, b \in \mathbb{R}$ with $a<b$

$$
p(x)= \begin{cases}\frac{1}{b-a}, & \text { für } a \leq x \leq b \\ 0, & \text { otherwise }\end{cases}
$$

b) Normal distribution with expected value $\mu$ and standard deviation $\sigma$

$$
p(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

Hint: For normalization, calculate the square of the integral, carry this over to a two-dimensional integration and then use polar coordinates.

Exercise 3 The small end of the stick [9 Points]
Consider a stick of length $L$. As theorists, we first assume that the stick is broken at an arbitrary position $0 \leq x \leq L$.
a) What is the average length of the smaller piece?
b) Determine the expected value for the length ratio of smaller to larger piece.
c) For a slightly more realistic result, assume that it is easier to break the stick near the center. Therefore, let the probability of breakage at $x$ be normally distributed around $L / 2$ with variance $\sigma$. Again, calculate the expected length of the smaller part.
Hint: The integral

$$
\frac{2}{\sqrt{\pi}} \int_{0}^{x} \mathrm{e}^{-y^{2}} \mathrm{~d} y=\operatorname{erf}(x)
$$

is described by the so-called (Gaussian) error function $\operatorname{erf}(x)$ since it cannot be solved analytically.
Exercise 4 Quantum dice and coins ${ }^{1}$ [12 Points]
You are given two unusual three-sided dice which, when rolled, show either one, two, or three spots. There are three games played with these dice: Distinguishable, Bosons, and Fermions. In each turn in these games, the player rolls the two dice, starting over if required by the rules, until a legal combination occurs. In Distinguishable, all rolls are legal. In Bosons, a roll is legal only if the second of the two dice shows a number that is is larger or equal to that of the first of the two dice. In Fermions, a roll is legal only if the second number is strictly larger than the preceding number. See Fig. 1 for a table of possibilities after rolling two dice. Our dice rules are the same ones that govern the quantum statistics of noninteracting identical particles.


Figure 1: Quantum dice. Rolling two dice. In Bosons, one accepts only the rolls in the shaded squares, with equal probability $1 / 6$. In Fermions, one accepts only the rolls in the darkly shaded squares (not including the diagonal from lower left to upper right), with probability $1 / 3$.
a) Presume the dice are fair: each of the three numbers of dots shows up $1 / 3$ of the time. For a legal turn rolling a dice twice in the three games (Distinguishable, Bosons, and Fermions), what is the probability $\rho(5)$ of rolling a 5 ?
b) For a legal turn in the three games, what is the probability of rolling a double?
(Hint: There is a Pauli exclusion principle: when playing Fermions, no two dice can have the same number of dots showing.) Electrons are fermions; no two noninteracting electrons can be in the same quantum state. Bosons are gregarious; noninteracting bosons have a larger likelihood of being in the same state.

Let us decrease the number of sides on our dice to $N=2$, making them quantum coins, with a

[^0]head $H$ and a tail $T$. Let us increase the total number of coins to a large number $M$; we flip a line of $M$ coins all at the same time, repeating until a legal sequence occurs. In the rules for legal flips of quantum coins, let us make $T<H$. A legal Boson sequence, for example, is then a pattern $T T T T \ldots H H H H \ldots$ of length $M$; all legal sequences have the same probability.
c) What is the probability in each of the games, of getting all the $M$ flips of our quantum coin the same (all heads $H H H H \ldots$ or all tails $T T T T \ldots$ )? (Hint: How many legal sequences are there for the three games? How many of these are all the same value?)

The probability of finding a particular legal sequence in Bosons is larger by a constant factor due to discarding the illegal sequences. This factor is just one over the probability of a given toss of the coins being legal, $Z=\sum_{\alpha} p_{\alpha}$ summed over legal sequences $\alpha$. For part (c), all sequences have equal probabilities $p_{\alpha}=2^{-M}$, so $Z_{\text {Dist }}=2^{M} 2^{-M}=1$, and $Z_{\text {Boson }}$ is $2^{-M}$ times the number of legal sequences. So for part (c) the probability to get all heads or all tails is $\left(p_{T T T} \ldots+p_{H H H} \ldots\right) / Z$. The normalization constant $Z$ in statistical mechanics is called the partition function, and will be amazingly useful.
Let us now consider a biased coin, with probability $p=1 / 3$ of landing $H$ and thus $1-p=2 / 3$ of landing $T$.
d) What is the probability $p_{T T T \ldots \text {... that a given toss of } M \text { coins has all tails (before we throw out the illegal }}$ ones for our game)? What is $Z_{\text {Dist }}$ ? What is the probability that a toss in Distinguishable is all tails? If $Z_{\text {Boson }}$ is the probability that a toss is legal in Bosons, write the probability that a legal toss is all tails in terms of $Z_{\text {Boson }}$. Write the probability $p_{T T T \ldots H H H}$ that a toss has $M-m$ tails followed by $m$ heads (before throwing out the illegal ones). Sum these to find $Z_{\text {Boson }}$. As $M$ gets large, what is the probability in Bosons that all coins flip tails?


[^0]:    ${ }^{1}$ From the book of Sethna, James P., Statistical Mechanics: Entropy, Order Parameters, and Complexity, 2nd edn (Oxford, 2021; online edn, Oxford Academic, 22 Apr. 2021), https://doi.org/10.1093/oso/9780198865247.001.0001.

