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Exercise 1 Conditional probabilities [4 Points|

DNA tests are frequently used in modern criminalistics to solve crimes. A sample from the crime scene is
compared with a sample from a suspect. Assume in the following that on average one out of three tested
suspects is guilty and one quarter of the tests show a match. In a court case, the prosecutor now argues
that the probability of a DNA match for an innocent person is only 15%. The defense attorney points to
the likelihood that someone is innocent even though the test is positive. What probability is he citing? Who
should the judge believe?

Exercise 2 Characteristic Function and Moments |15 Points|

Given the following density functions for probability distributions. Show that these are normalized and
calculate the characteristic function and the first three moments and cumulants.

a) Uniform distribution: a,b € R with a < b

—, fira<z<b
pz) =4
0, otherwise

b) Normal distribution with expected value p and standard deviation o

p(x) = ! GXP<—(36_5)2>

- V270 20

Hint: For normalization, calculate the square of the integral, carry this over to a two-dimensional
integration and then use polar coordinates.
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Exercise 3 The small end of the stick |9 Points|

Consider a stick of length L. As theorists, we first assume that the stick is broken at an arbitrary position
0<z<L.

a) What is the average length of the smaller piece?
b) Determine the expected value for the length ratio of smaller to larger piece.

c¢) For a slightly more realistic result, assume that it is easier to break the stick near the center. Therefore,
let the probability of breakage at = be normally distributed around L /2 with variance o. Again, calculate
the expected length of the smaller part.

Hint: The integral
2 /"’3 2
— e ¥ dy = erf(x)
v Jo

is described by the so-called (Gaussian) error function erf(x) since it cannot be solved analytically.
Exercise 4 Quantum dice and coins ' [12 Points]

You are given two unusual three-sided dice which, when rolled, show either one, two, or three spots. There
are three games played with these dice: Distinguishable, Bosons, and Fermions. In each turn in these games,
the player rolls the two dice, starting over if required by the rules, until a legal combination occurs. In
Distinguishable, all rolls are legal. In Bosons, a roll is legal only if the second of the two dice shows a number
that is is larger or equal to that of the first of the two dice. In Fermions, a roll is legal only if the second
number is strictly larger than the preceding number. See Fig. 1 for a table of possibilities after rolling two
dice. Our dice rules are the same ones that govern the quantum statistics of noninteracting identical particles.
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Figure 1: Quantum dice. Rolling two dice. In Bosons, one accepts only the rolls in the shaded squares, with
equal probability 1/6. In Fermions, one accepts only the rolls in the darkly shaded squares (not including
the diagonal from lower left to upper right), with probability 1/3.

a) Presume the dice are fair: each of the three numbers of dots shows up 1/3 of the time. For a legal turn
rolling a dice twice in the three games (Distinguishable, Bosons, and Fermions), what is the probability
p(5) of rolling a 57

b) For a legal turn in the three games, what is the probability of rolling a double?
(Hint: There is a Pauli exclusion principle: when playing Fermions, no two dice can have the same
number of dots showing.) Electrons are fermions; no two noninteracting electrons can be in the same
quantum state. Bosons are gregarious; noninteracting bosons have a larger likelihood of being in the
same state.

Let us decrease the number of sides on our dice to N = 2, making them quantum coins, with a

'From the book of Sethna, James P., Statistical Mechanics: Entropy, Order Parameters, and Complexity, 2nd edn (Oxford,
2021; online edn, Oxford Academic, 22 Apr. 2021), https://doi.org/10.1093/0s0/9780198865247.001.0001.



head H and a tail T . Let us increase the total number of coins to a large number M ; we flip a
line of M coins all at the same time, repeating until a legal sequence occurs. In the rules for legal
flips of quantum coins, let us make 7" < H. A legal Boson sequence, for example, is then a pattern
TTTT..HHHH... of length M ; all legal sequences have the same probability.

What is the probability in each of the games, of getting all the M flips of our quantum coin the same
(all heads HHHH... or all tails TTTT... )? (Hint: How many legal sequences are there for the three
games? How many of these are all the same value?)

The probability of finding a particular legal sequence in Bosons is larger by a constant factor due
to discarding the illegal sequences. This factor is just one over the probability of a given toss of the
coins being legal, Z = > p, summed over legal sequences «. For part (c), all sequences have equal
probabilities p, = 2™M 50 Zpist = 2M2~M = 1. and Zposon is 2~ M times the number of legal sequences.
So for part (c¢) the probability to get all heads or all tails is (prrr.. + prmm...)/Z. The normalization
constant Z in statistical mechanics is called the partition function, and will be amazingly useful.

Let us now consider a biased coin, with probability p = 1/3 of landing H and thus 1 — p = 2/3 of
landing T'.

What is the probability pprr.. that a given toss of M coins has all tails (before we throw out the illegal
ones for our game)? What is Zp;s; 7 What is the probability that a toss in Distinguishable is all tails?
If Zgoson is the probability that a toss is legal in Bosons, write the probability that a legal toss is all
tails in terms of Zpgson - Write the probability prrr. mmm that a toss has M — m tails followed by m
heads (before throwing out the illegal ones). Sum these to find Zposon - As M gets large, what is the
probability in Bosons that all coins flip tails?



