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Exercise 1 Run & tumble (random walk and diffusion equation) 1 [13 Points]

Purcell, in an essay Life at low Reynolds number, describes the strange physical world at the scale of bacteria.
The bacterium E. coli swims using roughly five corkscrew-shaped propellers called flagella, which spin at 100
revolutions per second. These propellers mesh nicely into a bundle when they rotate counter-clockwise,
causing the bacterium to run forward. But when they rotate clockwise, the bundle flies apart and the
bacterium tumbles. Assume that during a tumble the bacterium does not change position, and after a tumble
it is pointed in a random direction. Pretend the runs are of fixed duration T ≈ 1 s and speed V ≈ 20µm/s,
and they alternate with tumbles of duration τ ≈ 0.1 s.

a) What is the mean-square distance ⟨r2⟩ moved by our bacterium after a time t = N(T + τ), in terms of
V , T , t, and τ ? What is the formula for the diffusion constant? (Hint: Be careful, your formula for
the diffusion constant should depend on the fact that the diffusion is in three dimensions.)

Purcell tells us that the cell does not need to swim to get to new food after it has exhausted the
local supply. Instead, it can just wait for food molecules to diffuse to it, with a rate he says is 4πaCD
food molecules per second. Here a is the radius of the cell, C is the food concentration at infinity, and
D ≈ 10−9m2/s is the food diffusion constant.

b) Solve the diffusion equation for the density of food molecules in the steady state, and confirm Purcell’s
formula for the rate at which food is eaten. We assume the food is eaten by the bacterium with perfect
efficiency at the sphere of radius a (ρ(a) = 0).
Hint: Use the Laplacian in spherical coordinates:
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)
since the function ρ(r) = ρ(r) has spherical symmetry.

The cell lives in an environment which varies in space. It swims to move toward regions with higher
concentrations of food, and lower concentrations of poisons (a behavior called chemotaxis). Bacteria are
too small to sense the concentration gradient from one side of the cell to the other. The run-and-tumble
strategy is designed to move them far enough to tell if things are getting better. In particular, the cells
run for longer times when things are getting better (but not shorter when things are getting worse).

1From the book of Sethna, James P., Statistical Mechanics: Entropy, Order Parameters, and Complexity, 2nd edn (Oxford,
2021; online edn, Oxford Academic, 22 Apr. 2021), https://doi.org/10.1093/oso/9780198865247.001.0001.
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c) Model chemotaxis with a one-dimensional run-and-tumble model along a coordinate x. The velocity
±V is chosen with equal probability at each tumble, with the same velocity and tumble time τ as
above. But now the duration T+ of runs in the positive x direction is larger than the duration T of
runs in the negative direction. Compare the run speed V to the average velocity ⟨dxdt ⟩ of the bacterium
toward a better life.

Exercise 2 Run & tumble simulation [4 Points]

The given code (blatt3_bacterium.py) simulate the run & tumble kinetics of a bacterium described in the
previous exercise. Change the code to calculate and draw the mean square distance ⟨r2⟩ and verify the
theoretical result ⟨r2⟩ = NV 2T 2.

Exercise 3 Particles with two energy levels (microcanonical ensemble) [10 Points]

In quantum mechanics, an energy level is degenerate if it corresponds to two or more different measurable
states of a quantum system. Consider a system N of identical but distinguishable particles, each of which can
assume one of the two energy values ϵ > 0 and 0. The upper energy level should have a g-fold degeneracy,
while the lower level is non-degenerate. The total energy of the system is denoted by E and the occupation
numbers of the two levels by n0 and n+. Use the microcanonical ensemble in the following.

a) Show that the state sum is

Ω(E,N) =
N ! gn+

n+! (N − n+)!

b) The entropy is defined as S(E,N) = kB lnΩ(E,N) with the Boltzmann constant kB. Calculate S,
when N and E are large. (We fix E/(ϵN) =: x constant for N −→ ∞.)
Hint: Use the Stirling formula in the form: lnN ! ≈ N lnN −N .

c) Find the population numbers n+ and n0 depending on the temperature T of the system, which is
defined by 1

T =
(
∂S
∂E

)
N

.

d) Now determine n+ and n0 in the limit T −→ 0.

Exercise 4 Hard sphere gas (microcanonical ensemble) 2 [13 Points]

We can improve on the realism of the ideal gas by giving the atoms a small radius. If we make the potential
energy infinite inside this radius (hard spheres), the potential energy is simple (zero unless the spheres overlap,
which is forbidden). Let us do this in two dimensions; three dimensions is only slightly more complicated, but
harder to visualize. A two-dimensional L × L box with hard walls contains a gas of N distinguishable hard
disks of radius r ≪ L (Fig. 1). The disks are dilute; the summed area Nπr ≪ L2 . Let A be the effective
area allowed for the disks in the box (Fig. 1): A = (L− 2r)2 .

a) The area allowed for the second disk is A − π(2r)2 (Fig. 1), ignoring the small correction when the
excluded region around the first disk overlaps the excluded region near the walls of the box. What is
the allowed 2N -dimensional volume in configuration space ΩHD of allowed zero-energy configurations
of hard disks, in this dilute limit? Leave your answer as a product of N terms.

Our formula in part (a) expresses ΩHD strangely, with each disk in the product only feeling the excluded
area from the former disks. For large numbers of disks and small densities, we can rewrite ΩHD more
symmetrically, with each disk feeling the same excluded area Ae .

b) Use (1− ϵ) ≈ e−ϵ and
∑N−1

m=0 m = N(N−1)
2 to approximate

ΩHD ≈ (Ae−Nδ)N ,

solving for δ and evaluating any products and sums over disks.
2Ibid.



Figure 1: Hard sphere gas.

c) Show that
ΩHD ≈ (A−Ae)

N .

Interpret your formula for the excluded area Ae, in terms of the range of excluded areas you found in
part (a) as you added disks.

d) Find the pressure for the hard-disk gas in the large N approximation of part (c), as a function of
temperatureT , A, r, and N . Does it reduce to the ideal gas law if the disk radius r = 0?
Hint: Constant energy is the same as constant temperature for hard particles, since the potential
energy is zero.


