Universität des Saarlandes

Naturwissenschaftlich-Technische Fakultät (NT)

Fachrichtung - Physik
Prof. Dr. L. Santen (Email: santen@lusi.uni-sb.de)
Dr. R. Shaebani (Email: shaebani@lusi.uni-sb.de)
Dr. C. Chevalier (Email: carole@lusi.uni-sb.de)
Web: http://santen.physik.uni-saarland.de

Saarbrücken, den 08.12.2023

Blatt 6 zur Theoretischen Physik IV, WS 2023/2024
(Abgabe bis 15.12.2023, 8:30 Uhr)

Exercise 1: Grand canonical ensemble

a) Consider a system that exchanges energy and particles with its surroundings. The energy and particle number of state i are denoted by E_{i} and N_{i}. The average energy and the average particle number are given by

$$
U=\sum_{i} \omega_{i} E_{i} \quad \text { and } \quad N=\sum_{i} \omega_{i} N_{i} .
$$

The grand canonical ensemble of this system can be obtained by maximizing the entropy

$$
S=-k_{\mathrm{B}} \sum_{i} \omega_{i} \ln \omega_{i}
$$

where ω_{i} is the probability of occupation of the state i. Use the method of Lagrange multipliers (see Blatt 4) to find the form of ω_{i} and the grand canonical partition function Z_{g} in terms of the energy and particle number of the states. Hint: Note the normalization $\sum_{i} \omega_{i}=1$.
b) Express ω_{i} in terms of temperature T and chemical potential μ :

$$
T=1 / \frac{\partial S}{\partial U}, \quad \mu=-T \frac{\partial S}{\partial N}
$$

c) Using the grand canonical potential as

$$
\Phi=-k_{\mathrm{B}} T \ln Z_{g} .
$$

show that

$$
\Phi=U-S T-\mu N
$$

$$
[4+6+1=11 \text { Points }]
$$

Exercise 2: A simplified model of the crystal surface

Consider a system consisting of M discrete sites, such as the surface of a crystal. Each site can be occupied by particles and its energy content is denoted by ϵ_{n} when it is occupied by n particles.
a) Find the partition function $Z_{N}(\beta)$ when there are a total of N particles in the system. As usual, $\beta=1 / k_{\mathrm{B}} T$.
b) Find the grand canonical partition function $Z_{g}(\beta, \mu)$ if the system is in contact with a reservoir and can exchange particles with it. The chemical potential is given by μ.
c) Derive a formula for the average number of particles in the system.
d) Calculate the average number of particles for the following cases:
i) $\epsilon_{n}=\epsilon n$ (with $\mu<\epsilon$)
ii) $\epsilon_{n}=\infty$ for $n \geq 2$ (therefore each site can be occupied by a maximum of one particle)
iii) $\epsilon_{n}=\frac{1}{\beta} \ln n$!

Exercise 3: Computational task (modeling the crystal surface)

Here we calculate the grand canonical partition function of the crystal surface introduced in exercise 2 assuming that $\epsilon_{n}=1$ for $0 \geq n \geq N_{\max }$ and $\epsilon_{n}=\infty$ for $n>N_{\max }$. Set $\beta=\mu=1$ and $M=10$ for simplicity. Plot $\ln Z_{g}$ versus $N_{\max }$ for $N_{\max } \in\{1,10\}$. As a guide, there is a Python code in the exercise folder (Blatt6ZgCrystalSurface.py), where Z_{g} is obtained for a given $N_{\max }$. You can complete it.
[4 Points]

Exercise 4: Ideal gas in a box

Consider a system of N particles in a cube of volume $V=L^{3}$. Each of the particles of mass m carries the energy

$$
\epsilon\left(n_{x}, n_{y}, n_{z}\right)=\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right) \epsilon_{0}, \epsilon_{0}=\frac{h^{2}}{8 m L^{2}},
$$

where $n_{x}, n_{y}, n_{z} \in \mathbb{Z}_{\geq 0}$ and h denotes Planck's constant. In the following we assume that the particles are indistinguishable.
a) Find the partition function $Z_{N}(\beta)$ when there are N particles in the system. Hint: We assume that $\beta \epsilon_{0}=\epsilon_{0} / k_{\mathrm{B}} T \ll 1$, thus, you can approximate the summation by appropriate integration.
b) Find the grand canonical partition function $Z_{g}(\beta, \mu)$ if the system is in contact with a reservoir and can exchange particles with it. The chemical potential is given by μ.
c) Calculate the pressure $p=\frac{1}{\beta} \frac{\partial}{\partial V} \ln Z_{g}(\beta, \mu)$ and the average number $\langle N\rangle$ of particles in the system. Then show that $p V=\langle N\rangle k_{\mathrm{B}} T$.

