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Exercise 1: Fermi gas

a) Verify the antisymmetry of the wave function and the Pauli principle explicitly by using the Slater
determinant for a system of two fermions with a total of two states.

b) Calculate the density of states

z(ϵ) =
(2S + 1)Ld

(2πℏ)d

∫
δ(ϵ− ϵ(p)) ddp with ϵ(p) =

p2

2m

for a single non-relativistic quantum mechanical particle with mass m and S possible spin states in a
d-dimensional box of edge length L.

c) Now show that the canonical partition function of the ideal Fermi gas for d=3 and T=0 is given by

ZN (T=0) =
V

3π2ℏ3
(2mϵF )

3/2.

Remember that in the ground state, all states up to the Fermi energy ϵF are occupied. Why does ZN

exactly correspond to the particle number N?

[3+2+3=8 Points]

Exercise 2: White dwarfs

White dwarfs are high-density stars which are stabilized by resisting against the gravitational pressu-
re through the Fermi pressure. This arises because the electrons have to move to higher energy states
under strong compression in order to fulfill the Pauli principle. Since the temperature of such a star
(Tstar ≈ 105−107 K) is well below the Fermi temperature of the electrons (TFermi ≈ 109−1011 K), T ≈ 0 re-
presents a reasonable approximation and we can use the results of Excercise 1(c).

a) First calculate the average energy of a Fermi gas with particle number N in volume V . To do this,
express the Fermi energy as a function of the particle density N/V and use the density of states
obtained in Excercise 1(c). Obtain the Fermi pressure.

b) Now calculate the gravitational energy by assuming that the star is spherical and has a homogeneous
mass density ρ.

c) Determine the radius R0 of the white dwarf. To do this, find the minimum of the total energy as a
function of R. Hint: Assume that the star only consists of hydrogen. The number of electrons is then
given by the ratio Ms/mp between the star mass Ms and the proton mass mp , since the star is electri-
cally neutral and the electron mass can be neglected.
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d) Calculate this radius for the Sun and compare to the radius of the Earth. Also explicitly calculate the
Fermi pressure. Here is a list of the required parameters: ℏ = 1.055× 10−34 J s, MSun = 1.989× 1030 kg,
mp = 1.673× 10−27 kg, RSun = 6.96× 108 m, REarth = 6.36× 106 m, G = 6.674× 10−11 m3

kgs2 .

[6+4+3+2=15 Points]

Exercise 3: Comparison between classical, Fermi and Bose gases

Consider three systems of indistinguishable particles, all with the same T , V , and N . In the first system the
particles behave like fermions, in the second like bosons and in the third classically. Which system has the
highest and which has the lowest pressure P? Hint: Assume eβ(ϵ−µ)≫1.

[5 Points]

Exercise 4: Two-dimensional ideal Bose gas

Consider an ideal gas in a rectangle with dimensions 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly. For simplicity we ignore the
spin of the particles. The Hamiltonian of the ith particle is then given by

Ĥi =
ℏ2

2m

( ∂2

∂x2i
+

∂2

∂y2i

)
.

a) Find the stationary solutions of the Schrödinger equation Ĥi ψ(xi) = ϵ ψ(xi) with the boundary con-
ditions ψ(xi, 0) = ψ(xi, Ly) = ψ(0, yi) = ψ(Lx, yi) = 0. You don’t need to normalize the solutions.

b) For simplicity, we assume below that L = Lx = Ly. Find the energies of the ground state and first
excited state for the one-particle problem.

c) Find the number of states D(ϵ)∆ϵ in the energy interval ∈ [ϵ, ϵ+∆ϵ] (ϵ > 0).

[2.5+3.5+2=8 Points]

Exercise 5: Computational Task: Fermi–Dirac, Bose–Einstein, and Maxwell-Boltzmann distri-
butions

Visualize how Fermi–Dirac or Bose–Einstein distributions converge toward the Maxwell-Boltzmann distri-
bution at high energies. For simplicity set kB=1 and µ=0. Compare the results for T=1, 10, and 100 K.
Estimate the energy threshold at which Fermi–Dirac or Bose–Einstein distributions have less than 1% dif-
ference with the Maxwell-Boltzmann distribution at the given temperatures. You can use the given code
(Blatt10-Distributions-Code1.py) as a guide.

[4 Points]


