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Exercise 1 Einstein and Debye model for phonons [12 Points]

In the following, the contribution of phonons (bosonic quasiparticles of lattice vibrations) to the heat capacity
of solids will be investigated. To do this, consider N atoms, each with three isotropic vibration modes. Each
vibration mode should represent a harmonic oscillator with frequency ωi. Analogous to photons, the chemical
potential for phonons disappears.

a) Specify the mean internal energy as a function of the inverse temperature β and the discrete frequencies
ωi. For large N , these frequencies are very close, so that they can also be regarded as continuously
distributed. What is the average internal energy?
Hint: Take the density of states Z(ω) (i.e. in the interval [ω, ω + dω] there are Z(ω) dω possible
frequencies) as given.

In the Einstein model, it is now assumed for the sake of simplicity that all oscillators oscillate at the same
frequency ωE.

b) Use this to explicitly calculate the mean value of the internal energy and the heat capacity. Examine
the limiting cases β → 0 and β → ∞ and compare with the Dulong-Petit and Debye’s T 3-law.

The Debye model provides an improved description. The possible frequencies are continuously distributed
and limited upwards by a specified cut-off frequency ωD. The density of states is taken to be

Z(ω) = αω2Θ(ωD − ω).

with α = const and Θ as a Heaviside function.

c) How must α be chosen so that the density of states is correctly normalized? Calculate the mean internal
energy and the heat capacity again.
Hint: You do not need to solve the integrals for internal energy and heat capacity here.

d) Now introduce the Debye temperature ΘD = ℏωD
kB

and calculate the heat capacity explicitly T ≫ ΘD
or T ≪ ΘD. Compare with the result from b.).
Hint: Develop the numerator and denominator of the integral for T ≫ ΘD in leading order. Use the
following identity for T ≪ ΘD: ∫ ∞

0

x4 ex

( ex − 1)2
dx =

4π4
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Figure 1: Bose–Einstein condensation at 400, 200, and 50 nano-Kelvin. The pictures are spatial distri-
butions 60 ms after the potential is removed; the field of view of each image is 200µm × 270µm. The left
picture is roughly spherically symmetric, and is taken before Bose condensation; the middle has an elliptical
Bose condensate superimposed on the spherical thermal background; the right picture is nearly pure con-
densate. From Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E., and Cornell, E. A. (1995).
Observation of Bose–Einstein condensation in a dilute atomic vapor. Science, 269, 198.

Exercise 2 Bose condensation: the experiment [12 Points]

Anderson, Ensher, Matthews, Wieman, and Cornell in 1995 were able to get a dilute gas of rubidium-87
atoms to Bose condense.

a) Is rubidium-87 (37 protons and electrons, 50 neutrons) a boson or a fermion?

b) At their quoted maximum number density of 2.5×1012/cm3 , at what temperature T predict
c do you expect

the onset of Bose condensation in free space? They claim that they found Bose condensation starting
at a temperature of Tmeasured

c = 170 nK. Is that above or below your estimate? (Useful constants:
h = 6.6262× 10−27 erg s, mn ∼ mp = 1.6726× 10−24 g, kB = 1.3807× 10−16 erg/K.)

The trap had an effective potential energy that was harmonic in the three directions, but anisotropic with
cylindrical symmetry. The frequency along the cylindrical axis was f0 = 120Hz so ω0 ∼ 750Hz, and the two
other frequencies were smaller by a factor of

√
8 : ω1 ∼ 265Hz. The Bose condensation was observed by

abruptly removing the trap potential, and letting the gas atoms spread out; the spreading cloud was imaged
60 ms later by shining a laser on them and using a CCD to image the shadow.

For your convenience, the ground state of a particle of mass m in a one-dimensional harmonic oscilla-
tor with frequency ω is ψ0(x) = (mω

πℏ )
1/4 e−mωx2/2ℏ, and the momentum-space wavefunction is ψ̃0(p) =

(πmℏω)−1/4 e−p2/2mℏω. In this 3D problem the solution is a product of the corresponding Gaussians along
the three axes.

c) Will the momentum distribution be broader along the high-frequency axis (ω0) or one of the low-
frequency axes (ω1)?
Assume that you may ignore the small width in the initial position distribution, and that the positions
in Fig. 1 thus reflect the velocity distribution times the time elapsed. Which axis, x or y in Fig. 1 ,
corresponds to the high-frequency cylinder axis? What anisotropy would one expect in the momen-
tum distribution at high temperatures (classical statistical mechanics)? Does this high-temperature
anisotropy agree with the experimental measurement in 1 ?



Their Bose condensation is not in free space; the atoms are in a harmonic oscillator potential. In the calculation
in free space, we approximated the quantum states as a continuum density of states g(E). That is only sensible
if kBT is large compared to the level spacing near the ground state.

d) Compare ℏω to kBT at the Bose condensation point Tc measured in their experiment. (ℏ = 1.05459×
10−27erg s; kB = 1.3807× 10−16erg/K.)

For bosons in a one-dimensional harmonic oscillator of frequency ω0, it is clear that g(E) = 1/(ℏω0); the
number of states in a small range ∆E is the number of ℏω0 it contains.

e) Calculate the density of single-particle eigenstates

g(E) =

∫ ∞

0
dϵ1dϵ2dϵ3g1(ϵ1)g2(ϵ2)g3(ϵ3)× δ(E− (ϵ1 + ϵ2 + ϵ3))

for a three-dimensional harmonic oscillator, with one frequency ω0 and two of frequency ω1.
Hint: What is the shape of the energy shell in ϵ space?

Their experiment has N = 2× 104 atoms in the trap as it condenses.

f) By working in analogy with the calculation in free space and your density of states from part (e), find
the maximum number of atoms that can occupy the three-dimensional harmonic oscillator potential
(without Bose condensation) at temperature T.
Hint:

∫∞
0 z2/(ez − 1)dz = 2ζ(3) = 2.40411.

According to your calculation, at what temperature TH0
c should the real experimental trap have Bose

condensed?

Exercise 3 One-dimensional XY-model [12 Points]

Consider a 1D spin model, which is defined by the variables ϕi , each of which can take the values −π and
π and interact with their neighbors ϕi+1 and ϕi−1 such that the sum of states is given by

Z =

∫ π

−π

N∏
l=1

dϕl
2π

eK
∑N−1

k=1 cos(ϕk−ϕk+1)+K cos(ϕN−ϕ1).

a) Find the transfer matrix.

b) Calculate the sum of states in the limit N → ∞.
Hint: The eigenvalue equation is an integral equation and the normalized eigenfunctions of the transfer
matrix are einϕ

√
2π

for n = 0,±1,±2, . . .. For real a and integer n, you can use the modified Bessel function
In(a) =

1
2π

∫ π
−π e

a cosϕ+inϕ dϕ.

c) Determine the correlation length ξ in the limiting case N → ∞.

Exercise 4 Computational task: 2D Ising model of ferromagnetism [4 Points]

Simulate the 2D Ising model of ferromagnetism, and calculate the magnetization of the system at different
temperatures. Interpret the result. As a guide, there is a Python code in the exercise folder (blatt11_2D-
Ising.py), you can complete it.


